Lesson 19. Partial Derivatives, cont.

0 Warm up

Example 1. Find all the second partial derivatives of $f(x, y) = \ln(ax + by)$.

Example 2. Find all the second partial derivatives of $w(u, v) = 1 + \sqrt{1 + uv^2}$.

1 More examples

Example 3. The temperature at a point (x, y) on a flat metal plate is given by $T(x, y) = \frac{60}{(1 + x^2 + y^2)}$, where *T* is measured in °C and *x*, *y* in meters. Find the rate of change in temperature with respect to distance at the point (2,1) in the *x*-direction and the *y*-direction.

Example 4. The average energy *E* (in kcal) needed for a lizard to walk or run a distance of 1 km has been modeled by the equation

$$E(m,v) = 2.65m^{0.66} + \frac{3.5m^{0.75}}{v}$$

where *m* is the body mass of the lizard (in grams) and *v* is its speed (in km/h). Calculate $E_m(400, 8)$ and $E_v(400, 8)$ and interpret your answers.

Example 5. Cobb and Douglas used the equation $P(L, K) = 1.01L^{0.75}K^{0.25}$ to model the productivity of the American economy from 1899 to 1922, where *L* is the amount of labor and *K* is the amount of capital.

- a. Calculate P_L and P_K .
- b. Find the rate of change in productivity with respect to labor and capital in the year 1899, when L = 100 and K = 100. Interpret the results.
- c. Do the same for the year 1920, when L = 194 and K = 407.
- d. In the year 1920, which would have benefited production more, an increase in capital investment or an increase in spending on labor?

Example 6. Consider the contour map of a function *f* given below. Are the following derivatives at the given point positive or negative?

a. f_x

b. f_y

c. f_{xx}

- d. f_{yy}
- e. f_{xy}

